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For convective heat transfer in laminar continuum tube flow with 

uniform wall heat flux, Sellars et all have obtained asymptotic formulas 

for the eigenvalues and coefficients through a generalization of constant 

wall temperature results. An improved and more direct treatment has been 

presented by Dzung 2 . 
The advent of space flight has brought about increased interest in 

the heat transfer to low-density gas flow in tubes. Sparrow and Lin3 

have considered the fully developed heat transfer in circular tubes under 

slip-flow conditions. It is of interest to determine the possible appli- 

cation of the method of Sellars et a1 to laminar tube slip flow. 

We wish to find solutions of 

(d/dq) Cs(dRn/dT) I + hn(Zf)TR, = 0 

subject to 

Rn(0) = 1 

and 

[(dRn/d7)] = 0 at 11 = 0 and 7 = 1 

where 7 

dimensionless velocity distribution, 

is the dimensionless radial distance (r/ro), f(7) is the 

* Aerospace Engineer. Associate member A U  

(3) 
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f ( q )  = u(q)/?i = 2[1 - q 2  + 4a]/[1 + sa] (4) 

and a s (&/id). The function R, represents t h e  r a d i a l  temperature 

d i s t r i b u t i o n  i n  the  thermal entrance region, and hn i s  the  eigenvalue. 

Su i s  t h e  ve loc i ty  s l i p  coefficient3.  The ve loc i ty  d i s t r i b u t i o n  as 

given i n  Eq. (4) assumes t h a t  thermal creep i s  negl igible ,  

In  accordance with the  method of S e l l a r s  e t  al., a solut ion of 

the form 

Rn('7) = explg(.rl)l (5) 

i s  considered, where 

g = 6 go +. Q1 + ( g 2 / 4 3  "I" - (6) 

and, s ince A i s  assumed t o  b e  large,  only t h e  f i r s t  two terms of the  

above s e r i e s  a r e  re ta ined.  It can be shown t h a t  R-, i s  given from 

Eqs. (5) and (6)  as 

R.,= A exp [ i& lq (2f)1'z d ? j  + 

- I  

B exp [id% J" 0 (2f11/2 d j , , ! ,1 /2(2f )1 /4  ( 7 )  

excluding the  s ingular  point  q = 0. It should be noted t h a t ,  for  con- 

tinuum flow (a = 0),  a s fngular i ty  a l so  e x i s t s  a t  q = 1, since 

[ f ( l ) l G 0  = 0. 

v a l i d  near = 11f2. For s l i p  flow, no s i n g u l a r i t y  exists a t  = 1, since 

[ f ( l ) ] d O  = 8a/(l + 8a) = us/Ti, where u s  i s  t h e  s l i p  velocity.  

This has required t h e  developerhent of an a l t e r n a t e  solut ion 

- 
The coef f ic ien ts  A and B a r e  determined from continuation of 

Eq. ( 7 )  t o  t h e  c e n t r a l  zone 

Bessel funct ion 

q = 0, where Rn(q) can be approximated by a 
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where f(0) = 2(1 + 4a)/(l + 8a) = u,/B. From the asymptotic expression 

of Bessel functions, the coefficients are determined, so that 

where 

(1 + 4a)arc sin(?/(-) 4- I/ 
The slope of Rn(q) at the wall is found by differentiating 

Eq. (9) and setting q = 1; the result is 

(2f)'l2 d7, E I 1 - 4a, and s where rn f fin 11, I1 E 

Setting RA(1) = 0 yields a series of eigenvalues h, with the 

corresponding eigenfunction Rn as roots of the equation 

tan rn = (FT, + E)/(FT, - E) 
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The coefficients en of the series expansion for uniform wall heat 

flux are determined by the requirement that3,4 

which, with the orthogonality property of the eigenfunctions, leads to 

(14) I 2  
Cn = i/ [h(a R/$ ax) Iq=l,l=~, 

Hence, 

Dn 3 CnRn(l) = - (16a)/b + (E2/F> + I%:] (15) 

These expressions were derived on the assumption that An is 

large and consequently are supposedly valid only in Chat limit. 

*the use of Eqs. (12) and (15) gives values that appear to ”fit” between 

results for continuum flow 

for the values of n as small as 2, as can be seen from the comparison 

However, 

(us = 0) and for slug flow (us/ii4 1) even 

shown in Table I. The results for continuum flow were obtained from 

expressions presented by Dzung”, wniie for siug r h w ,  thc eTgerv%>xs SP 

obtained as the roots of J1(fin) = 0, where J1 is a Bessel function 

of the first kind and of first order; the coefficients Dn are then ob- 

tained from the simple result 

9 

Dn =-l/”hn. 

It should be mentioned that the first few eigenvalues apparently 

become slightly inaccurate (i.e., do not fit) as (&/‘Ti -$. 0) 

actions between the velocity and temperature fields, such as thermal creep, 

Also, inter- 

~x,-v-E “ueii iicglectcd, ac n~ted eprlier 
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From t h i s  comparison it appears t h a t  t h e  method of Sella.rs, e t  al. has 

d e f i n i t e  app l i ca t ion  t o  determining the eigenvalues and c o e f f i c i e n t s  for heat 

t r a n s f e r  i n  laminar tube s l i p  flow. 

treatment ou t l ined  here t o  t h e  problem of hea t  t r a n s f e r  t o  laminar s l i p  

flow i n  a p a r a l l e l  p l a t e  channel. 

The author i s  cur ren t ly  extending the  
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Ls/E = 0 

2.531 

4.578 

6.599 

8.610 

-0,1985 

-0 0693 

-0.0365 

-0.02 30 
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'TABLE I 
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4-71 

6.78 

8.81 

------- 
-0 e 0594 

-0,0306 

-0.0217 

-- 
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2.65 

4.75 

6.88 

9.00 

-0 1670 

-0 0515 

-0-0247 

-0.0145 

1 

2.710 

4.955 

7.195 

9.425 

-0 1360 

-0 0406 

-0 0194 

-0 0113 
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